
Universidad
Rey Juan Carlos

ESCUELA TÉCNICA SUPERIOR DE

INGENIEŔIA DE TELECOMUNICACIÓN

INGENIEŔIA DE TELECOMUNICACIÓN

PROYECTO FIN DE CARRERA

Virtual Reality Data Dashboard

Autor: Francisco Aguilar Hidalgo

Tutor: Jesús M. González Barahona

Curso académico: 2016/2017

Proyecto Fin de Carrera

Virtual Reality Data Dashboard

Autor: Francisco Aguilar Hidalgo

Tutor: Jesús M. González Barahona

La defensa del presente Proyecto Fin de Carrera se realizó el d́ıa

2017, siendo calificada por el siguiente tribunal:

Presidente:

Secretario:

Vocal:

y habiendo obtenido la siguiente calificación:

Calificación:

Fuenlabrada, a 2017

Una imagen dice más que mil palabras.

Acknowledgements

En primer lugar, quiero agradecer la oportunidad que Jesús M. Barahona me ha

ofrecido para realizar este proyecto y su dedicación en el mismo. Ha sido un gran

apoyo durante todo el camino recorrido en este proyecto siempre dándome los

mejores consejos posibles. También agradecer a Adrián Alonso y David Moreno

del departamento y creadores de THREEDC y VBoard-UI por su colaboración y

ayuda.

En segundo lugar, quiero agradecer a todos mis amigos que me han ayudado

a lo largo de este camino. Ofreciéndome su apoyo, cariño y ánimos de forma

incondicional. Muchos de ellos los he conocido en la universidad y ahora forman

una parte muy importante de mi vida. Juntos hemos pasado grandes experiencias

durante la carrera y después y espero que siga siendo aśı por mucho tiempo. A

mis amigos de siempre que son un gran apoyo, con ellos he madurado a través

de los años y compartido muchas primeras experiencias. En especial agradecer

a mi novia Elena por su paciencia y comprensión conmigo ayudándome en todo

momento.

Por último quiero agradecer a mi familia, ellos son los que me han guiado

hasta aqúı. Siempre han estado cuando les he necesitado y han hecho grandes

sacrificios por mı́. Me han transmitido todos sus valores y enseñado las cosas

importantes de la vida. Para mı́ ellos son lo más importante y una gran parte de

lo que soy se lo debo a ellos.

A todos vosotros os dedico mi proyecto.

vii

Abstract

Nowadays data visualization is one of the main ways of analyzing them. The need

to analyse large data-sets generated by the current society is very important

to help in decision making. Currently the tools that allow data visualizations

perform 2D graphics. The main form of diffusion is through web technologies,

among other reasons, for its ease of use and accessibility.

The main objective of the project is the creation of a tool that allows creat-

ing visualizations of data with 3D graphics in a web environment using current

web technologies. This tool also offers user interaction for data exploration and

integration with a data analysis engine that enhances the ease of use of the tool.

It also aims to offer the same 3D scene on a virtual reality enviroment to have a

more inmersive experience. All the code and its examples are open source. The

information is on the specific web of the project1.

1https://fran-aguilar.github.io/

ix

https://fran-aguilar.github.io/

Resumen

Hoy en d́ıa la visualización de datos es una de las principales v́ıas de análisis de

los mismos. La necesidad de poder analizar la gran cantidad de datos generados

por la sociedad actual es muy importante para ayudar en la toma de decisiones.

Actualmente las herramientas que permiten realizar visualizaciones de datos re-

alizan gráficos en 2D. La forma principal de difusión es mediante tecnoloǵıas web,

entre otros motivos, por su facilidad de uso y accesibilidad.

El objetivo principal del presente proyecto es la creación de una herramienta

que permita crear visualizaciones de datos con gráficos 3D en un entorno web uti-

lizando las tecnoloǵıas web actuales. La herramienta también ofrece interacción

con el usuario para la exploración de los datos y la integración con un motor de

análisis de datos donde se potencia la facilidad de uso de la herramienta. También

tiene como objetivo ofrecer esa misma escena 3D en un entorno de realidad vir-

tual para tener experiencia más inmersiva. Todo el codigo y sus ejemplos son

código abierto. La información está en la web especifica del proyecto2.

2https://fran-aguilar.github.io/

xi

https://fran-aguilar.github.io/

Contents

Acknowledgements vii

Abstract ix

Resumen xi

Contents xiii

Figure index xvii

Acronyms xix

1 Introduction 1

1.1 Current context . 1

1.2 Objetives . 2

2 Used Technologies 5

2.1 HTML . 5

2.2 JavaScript . 6

2.3 WebGL . 9

2.4 Virtual Reality . 12

2.5 WebVR . 13

2.6 Three.js . 14

2.7 A-Frame . 14

2.8 Crossfilter . 16

xiii

xiv CONTENTS

2.9 dc.js . 18

2.10 THREEDC . 18

2.11 VBoard-UI . 19

3 Development 21

3.1 SCRUM Methodology . 21

3.2 Iteration 0: Investigation and preliminary study 23

3.3 Iteration 1: First demo (chart) . 25

3.4 Iteration 2: Interactivity with the user and filtering 28

3.4.1 Mouse interactions . 28

3.4.2 Add crossfilter as data source 30

3.4.3 filtering in the charts . 31

3.5 Iteration 3: 3D visualizations . 31

3.6 Iteration 4: Library architecture 33

3.7 Iteration 5: Integration with a data dashboard. 37

3.7.1 VBoard-UI Integration . 38

3.7.2 Stacked Barchart . 39

3.7.3 Bundling js file . 39

3.7.4 Including src option in charts 40

4 Design and results 43

4.1 Software Description . 43

4.2 Use of the library . 45

4.3 A complex example . 51

5 Conclusions 55

5.1 Results . 56

5.2 Application of lessons earned . 56

5.3 Lessons learned . 56

5.4 Future work . 57

A README.md on GitHub 59

PROYECTO FIN DE CARRERA

CONTENTS xv

B Demo with Controller 63

Bibliography 65

FRANCISCO AGUILAR HIDALGO

Figure index

2.1 OpenGL ES primitives . 10

2.2 Implementation of WebGL in web browsers 11

2.3 Basic Example of WebGL . 12

2.4 VR Headsets . 13

2.5 Three.js examples . 14

2.6 Abstract representation of Entity-Component Pattern 16

2.7 dc.js example with interaction . 18

2.8 THREEDC Scenes . 19

2.9 Creating a chart in VBoard-UI . 20

3.1 SCRUM Methodology . 23

3.2 Three.js WebVR example . 24

3.3 A-frame WebVR example . 24

3.4 Barchart built with A-Frame . 26

3.5 Piechart built with A-Frame . 28

3.6 Ray-picking technique . 29

3.7 Different Cursor component behavior comparison: A-Frame’s built-in

cursor and mouse-cursor . 29

3.8 Piechart with mouse over interaction 30

3.9 Piechart is filtering the barchart . 31

3.10 3D Barchart . 32

3.11 Bubble chart . 33

xvii

xviii Figure index

3.12 PieChart starting a dashboard with our library aframedc 36

3.13 Two Charts inside a Panel with our library aframedc 37

3.14 Creating an A-Frame chart with VBoard-UI 38

3.15 Stacked Barchart . 39

3.16 Current file structure . 40

4.1 Piechart component: class structure 44

4.2 Different charts in a-framedc . 50

4.3 Initial state of the demo with OPNFV git repository statistics 52

4.4 Interacting with the charts and editing the scene with A-Frame inspector 52

4.5 The OPNFV demo when we enter on VR 53

B.1 Step 1: accessing the scene on the phone 64

B.2 Step 2: Server Side Connection . 64

PROYECTO FIN DE CARRERA

Acronyms

API Application Programming Interface

VR Virtual Reality

UI User Interface

3D ThreeDimensional

URJC Universidad Rey Juan Carlos I

HTML HyperText Markup Language

xix

Chapter 1

Introduction

In this chapter we will describe the problem and introduce the project objetives

and its context, in order to clarify its basis before diving into technical details.

1.1 Current context

Today’s society is generating more and more data. The analysis of data is there-

fore more complex and the transformation process is difficult to highlight useful

information in order to support decision making. One of the most common ways

of facilitating data analysis has been through charts of different types such as

pie, bar, or network diagrams. With modern operating systems, it facilitated the

creation of simple visualizations from data with programs like Microsoft Excel.

Then with the rise of the internet and better web browsers new libraries that

allowed the visualization of charts of data appeared. These libraries were multi-

platform, they did not need the installation of any software in our computer and

they allowed a greater interaction with the user, examples of this are dc.js, 3d.js

or highchart.

In recent years, with the bursting of the big data technology market, there

has been a greater need for efficient representation systems that transform all

that information into useful conclusions. The term data dashboard gains special

interest because it allows us to visually see metrics about key points of a business

1

2 CHAPTER 1. INTRODUCTION

or a specific process. Mainly the charts used are in 2D but the people do not

explore too much a 3D environment where you can rotate the charts or display

these same data with 3D graphics. The last year an URJC student explore this

field creating his library THREEDC that we will discuss later.

During these last years the use of virtual reality environment is also being ex-

plored for commercial purposes since these provide several advantages. A greater

immersion as we are totally focused on the content shown in our virtual reality

headset. The intensity of the experience is greater than in a 3D scenario since

the user’s behavior is directly linked to changes in the scene. One of the main

reasons for this interest in virtual reality has been: betting of big companies

with the launch of very low cost devices like Google CardBoard or Samsung VR.

The effort of the standardization of virtual Reality technologies in browser with

WebVR API. Also The demanding technical features required by a virtual real-

ity environment such as a delay in response input <20ms or a high frame rate

per second can be overcome by the processors of current smartphones makes it

accessible by a larger audience.

1.2 Objetives

In this project we have as main objective the creation of a library for web browsers

to create 3D charts of data. The library will be based on web standards so it is

not necessary to install a plugin to our browser. By relying on web standards we

also ensure that a very high percentage of users can use our application regard-

less of the operating system or web browser used. We will implement existing

interactions in 2D charts as they are dynamic charts that depend on the user’s

actions. In the project we will also visualize our 3D data charts on a virtual

reality environment. We want that our 3D scenes don’t require additional code

when we want to see it on virtual reality. To summarize we list all the objetives

below. The project has the following basic objetives:

• Create 3D chart visualizations of data.

PROYECTO FIN DE CARRERA

1.2. OBJETIVES 3

• The library must rely on web standards so no additional software must we

installed for executing our software. We ensure that our scene are exe-

cuted on different browsers and different Operating systems if they support

the standards. We’ll mainly rely on WebGL the standard of 3D graphics

representation.

• A way of managing the chart system.

• Achieve functionality and performance similar to existing libraries with

filter possibilities.

• Achieve a fast filter response. The user interaction must be as faster as

possible and data filter time is important to user’s experience.

• The feature to view any 3D scene created by our library on Virtual Reality

without additional code.

• Render our charts on a existing scenario, or create a scene from scratch.

FRANCISCO AGUILAR HIDALGO

Chapter 2

Used Technologies

During this chapter we’ll describe the technologies and concepts used through

this project. We’ll do examples of the most important to my project.

2.1 HTML

HTML[1] is a markup language based on tags in order to create web pages.

It defines a basic structure and a code (the HTML code) for the definition of

content (text, images, video and so on). Its great popularity is because it is a

standard of W3C (World Wide Web Consortium) a organization dedicated to

standardization of most of all web technologies and is the most used standard in

web pages representation.

It’s important to comment some of the new enhancements at its latest review

HTML5. The step from HTML 4 to HTML 5 was important because many

features was added .Some of these features are the following[2]:

• new semantic elements like <header>, <footer>, and lesssection>tags.

These new tags helps search engines to identify the correct web page con-

tent.

• Canvas, a two-dimensional drawing surface that you can program with

JavaScript.

5

6 CHAPTER 2. USED TECHNOLOGIES

• Video that you can embed on your web pages without resorting to third-

party plugins.

• Geolocation API. whereby visitors can choose to share their physical loca-

tion with a web application.

• Storage API. Persistent local storage without resorting to third-party plug-

ins.

• Improvements to HTML Web forms.

It also brings new changes and standardization on the 3D technology field. The

most important are canvas element and the WebGL standard these features pro-

vides to us a way of create 2D and 3D graphics. In addiction the latest versions

of web browsers have the GPU’s acceleration feature that greatly improve pro-

cessing time of the graphics.

On the other hand new experimental API that are not standarized at 100 % such

as positional audio API and Gamepad API or the webVR API is a signal of the

effort that companies are making to bring 3D web sites and new experiences on

the web.

2.2 JavaScript

JavaScript[3] is a interpreted programming language, implemented as a part of

web browsers. It allows the creation of client-side scripts in order to interact with

the user, controls the web browser in which the script is running, asynchronous

comunication between client and server and dynamic modification of the struc-

ture and the content showing on the web page. The origins comes from Netscape

company and its first release comes from its web browser in September 1995 un-

der the name of LiveScript. It was renamed to the actual name at the 2.0B3

version of this web browser.

In November 1996 Netscape submitted it to the ECMA Internacional association

in order to consider it a standard on the industry originating the first standardized

PROYECTO FIN DE CARRERA

2.2. JAVASCRIPT 7

version of the language at the ECMA-262 specification (also known as ECMAS-

ript) in June 1997. Actually the version of the standard is 5.1 released in June

2011. But JavaScript is not the unique implementation of this standard there are

others like JScript or ActionScript.

One of the main problems of JavaScript comes historically from the differences be-

tween the JavaScript engines inside the web browsers because not all the versions

of the different browsers has 100 % done the implementation of the standard and

it comes the problem, the web developers create their scripts and test on a specific

web browser but they have to consider a huge set of different web browsers and

operating systems. They usually have to create specific code for specific browsers.

Despite of that it is widely used among the web and it is one of the most popular

languages right now.

We describe some of the main features at the list below:

• Dynamic Types The types of the data are associated with the actual value

of a variable instead of its definition. There are no checks that verifies the

type safety at runtime so it accelerates the edit-test-debug process and we

don’t need specific signatures for our functions.

• Functions In JavaScript the functions can accept a function as a parameter

or return one, the variables defined on the function are restricted to the

function’s scope.

• Prototype based Its a type of object-oriented programming in which the

code reuse is performed inherit existing properties from a old object. When

you make a new object, you can select that should be its prototype.The

prototype link is used only in retrieval. If we try to retrieve a property value

from an object, and if the object lacks the property name, then JavaScript

attempts to retrieve the property value from the prototype object. And if

the object is lacking the property, then goes to its prototype object. This

is called delegation.

FRANCISCO AGUILAR HIDALGO

8 CHAPTER 2. USED TECHNOLOGIES

• Constructors The way of creating constructors is to use a function with

the reserved keyword new and on this function we create the object Inher-

iting properties and methods.

• Expresive object literal notation We can create an object simply listing

their name value pairs. This notation is the precursor of the data exchange

standard JSON (JavaScript Object Notation).

We can see at these examples below some of the key features of JavaScript:

// example of a function

function sum(x, y){

return x + y;

}

//a function as a variable

var sumfunction = function(x, y) {

return x + y;

};

var sumresult = sumfunction (1, 2);

//a function that takes anther function as a parameter

function performOperation(op, x, y){

return op(x, y);

};

//a function with an anonimous function inside

var displayClosure = function () {

var count = 0;

return function () {

return ++count;

};

}

// inicialize and declares the variable count

// returns a function that increments the count variable

var inc = displayClosure ();

inc(); // returns 1

inc(); // returns 2

var operationresult = performOperation(suma , 2, 2); //4

operationresult = performOperation(funcionSuma , 2, 2); //4

// dynamic typing

PROYECTO FIN DE CARRERA

2.3. WEBGL 9

var operationresult = suma("a", ’b’); //"ab"

// Object literal notation

var position = { x: 15, y:10};

// adding a new property to the object

position.z = 18;

// Object ’s constructor

function Vector(x, y)

{

this.x = x;

this.y = y;

}

var v = new Vector(1, 2);

//we change vector prototype , all the objects with Vector ’s

prototype

//are affected

Vector.prototype.min = function (){

return Math.min(this.x, this.y);

}

v.min // 1

2.3 WebGL

WebGL[4] is a web standard for 3D graphics representation, is a multi-plataform

API that allow us to use a native implementation of OpenGL ES 2.0 a simplified

variant of OpenGL designed for embedded systems. For web browser this API

will be exposed as a set of JavaScript programming interfaces. Thanks to this

native implementation we can render the graphics through PC’s hardware so no

additional software will be downloaded to show 3D content on a web page. In

webGL we must define a context (a canvas region within our HTML) in which the

3D scene will be drawn.We only create that context in web browsers that supports

HTML5. That region could be mixed with the rest of the page as another html

element and being transparent for the end-user also we have the posibility of

interact in a dynamic way with other elements on the page. At the figure 2.1

FRANCISCO AGUILAR HIDALGO

10 CHAPTER 2. USED TECHNOLOGIES

below we can see the set of initial OpenGL ES primitives. This primitive are the

same as the WebGL.

Figure 2.1: OpenGL ES primitives

Its first release was on March 2011 and the current stable version is 2.0 released

on January 2017. In these years a lot of libraries based on WebGL and game

engines based on WebGl appear in order to make easier the work of building 3D

scenes. Today most of web browsers for desktop, smart-phones and tables have

an implementation of webGL at least its first version. In the figure 2.2 we can see

a chart including usage relative of each browser and webGL support.Red color

means no support for that technology, Light green means partial support and

green means full support.

In order to render (create a 2D image from a scene) WebGL into a page, an

application must, at a minimum, perform the following steps:

1. Create a canvas element.

2. Obtain a drawing context for the canvas.

3. Initialize the viewport.That is the 2D rectangle used to project 3D scene.

4. Create one or more buffers containing the data to be rendered (typically

vertices).

PROYECTO FIN DE CARRERA

2.3. WEBGL 11

Figure 2.2: Implementation of WebGL in web browsers

5. Create one or more matrices to define the transformation from vertex buffers

to screen space.

6. Create one or more shaders to implement the drawing algorithm.

7. Initialize the shaders with parameters.

8. Draw.

This example1 is too long to include all your code in memory so in footnote

section we put a URL of this example. The output of this example is the shown

in figure 2.3. We can see that we work on a low level of abstraction and we need

to find a library that simplifies some WebGL task and allows us higher level of

abstraction.

1https://github.com/tparisi/WebGLBook/blob/master/Chapter%201/example1-1.html

FRANCISCO AGUILAR HIDALGO

https://github.com/tparisi/WebGLBook/blob/master/Chapter%201/example1-1.html

12 CHAPTER 2. USED TECHNOLOGIES

Figure 2.3: Basic Example of WebGL

2.4 Virtual Reality

Virtual reality usually refers to a computer technology that uses several devices

and tries to evoke a sensation of reality within virtual scene using realistic graph-

ics and sounds. The main device is virtual reality headset 2.4.

Although at the beginning it was thought exclusively for bringing more im-

mersive scenarios and experiences in video-games quickly other fields such as

medicine, asset management industry, relaxing therapies or tourism adapt this

technology. As a conclusion we can say that is useful in several fields because we

can make a realistic reality with high benefits in education or training.

In recent years with the launch of devices such as Google CardBoard or Sam-

sung VR with very economical prices which allow bringing virtual reality expe-

riences to our Smartphones. With the standardization of the first versions of

WebVR, the technology in web environments is further consolidated. Initiatives

exist to show contents through immersive experiences to the users for commercial

PROYECTO FIN DE CARRERA

2.5. WEBVR 13

(a) Google Cardboard (b) HTC Vive

Figure 2.4: VR Headsets

purposes since as we have commented with only a Smart-phone we can have a

really good Virtual reality experience. Some examples of this are: Volvo – XC90

Test Drive2 where we drive this car in different scenarios or New York Times -

Displaced 3 is a documentary video that tells the story of children away from

home. Both of this requires the installation of a mobile application to run it. Fi-

nally https://vr.with.in/ an example of virtual reality on the web that shows

an interface for navigation between 360o videos.

We conclude that Virtual Reality comes to bring us inmersive scenarios and

it is gaining wider acceptance between users.

2.5 WebVR

WebVR[5] is an experimental JavaScript API that provides support for virtual

reality devices such as HTC Vive, Oculus Rift or Google Cardboard in a web

browser. The main objectives of the API are:

• Detect virtual reality devices available.

• Gather devices capabilities.

2https://www.youtube.com/watch?v=Wuln2bJkp1k
3http://dragons.org/creators/imraan-ismail/work/the-displaced/

FRANCISCO AGUILAR HIDALGO

https://vr.with.in/
https://www.youtube.com/watch?v=Wuln2bJkp1k
http://dragons.org/creators/imraan-ismail/work/the-displaced/

14 CHAPTER 2. USED TECHNOLOGIES

• Show images on the device with a stable frame rate.

The biggest drawback of that technology was the lack of support for the browsers

(mainly Mozilla Nightly, and special Chromium builds are the unique that sup-

port WebVR) but with the recent introduction of WebVR 1.0 and 1.1 on March

and April, 2016 respectively, this shows that WebVR is a maturing platform that

is on its way to gaining wider acceptance.

2.6 Three.js

Three.js[6] is one of the most popular WebGL based library to build scenes in a

easy form. It provides a higher level of abstraction than WebGL and simplifies

tasks of rendering, creating meshes, data loading and export and import models.

It brings debug utilities and a high-set of math functions to work with frustum,

matrices, quaternion and more. There are a lot of plug-ins made by the commu-

nity also. On his web there are more than 150 examples of using the library. At

the figure 2.5 below we can see examples of the library.

It is specially important in this project because the main technology used through

this project is A-Frame and it is built on top of three.js. So basic concepts of the

library are needed when we extend A-Frame like in our solution.

Figure 2.5: Three.js examples

2.7 A-Frame

A-frame[7] is a web framework for creating virtual reality experiences in a quick

and simple manner you don’t have anything to install to begin with. It is built on

PROYECTO FIN DE CARRERA

2.7. A-FRAME 15

the top of the popular 3d framework three.js framework. We can create scenes just

only with HTML code and we abstract a lot of initial settings of the 3d scene for

example the render loop, the vertices definition or handle texture loading. This

framework has had a great acceptance by the VR community who improve and

maintain the docs, create new issues and develop new components and submit

them later to the A-frame registry. Another nice feature that is compatible with

most libraries, frameworks and tools on JavaScript like angular, d3.js or jQuery.

It also provides a handy built-in visual 3D inspector that allows us drag, rotate

and scale the entities, copy and paste objects and see the results immediately.

We can save those changes too.

A-frame uses entity-component-system pattern for code reuse and compose new

entities. The use of this pattern is widely taken by video-games development the

main idea is that every object of our scene is an entity which is a empty con-

tainer by itself. Later we add different components which defines its appearance,

behaviour and/or functionality and the system bring to us a global scope within

a kind of component for example in a scene with several cameras we can detect

the active camera through system of component camera.

For example, imagine we want to build a bicycle entity by assembling components

so we define:

• geometry component that has the definition of appearance.

• material component that has the definition of bicycle color.

• position component that has information of bicycle’s position.

• velocity component that has information about the direction, acceleration

and velocity vectors in addition it has methods to start and stop.

At the picture 2.6 we can see a graphical example:

FRANCISCO AGUILAR HIDALGO

16 CHAPTER 2. USED TECHNOLOGIES

Figure 2.6: Abstract representation of Entity-Component Pattern

2.8 Crossfilter

Crossfilter[8] is a JavaScript library for exploring large multivariate dataset in

the web browser. It supports extremely fast (less than 30ms) interaction with

coordinated view, even with huge datasets containing a million or more records.

Actually is not under active development but the author of the library considers

that it is essentially complete. Even so we have chosen this technology to carry

out the project because of its quickness in interactions and a great amount of

data that can be used. Next we will explain more in detail the characteristics of

the library and a basic example.

Before discussing a basic example to extract data from crossfilter we must

know some basic concepts that will summarize these are: facts, dimensions and

measures. The facts are each and every one of our records, for example if we have

data from a source code repository, the commits table is a fact table. This table

is the one we uploaded using JSON to crossfilter. A dimension in this context

is a property of the data either existing or derived from several properties. The

measure is ultimately an aggregated value from a dimension, in crossfilter these

measures are achieved with the group and reduce methods.

The filtering feature in crossfilter works somewhat differently because when

one dimension is filtered, all other data dimensions are affected in their calcu-

lations and groupings except the dimension which the filtering is performed on.

In addition crossfilter filtering is stateful so future filters we apply are added to

existing ones.

//we load the data with a Payments Table

var payments = crossfilter ([

{ qty: 2, total: 190, tip: 100, type: "tab"},

{ qty: 2, total: 190, tip: 100, type: "tab"},

PROYECTO FIN DE CARRERA

2.8. CROSSFILTER 17

{ qty: 1, total: 300, tip: 200, type: "visa"},

{ qty: 2, total: 90, tip: 0, type: "tab"},

{ qty: 2, total: 90, tip: 0, type: "tab"},

{ qty: 2, total: 90, tip: 0, type: "tab"},

{ qty: 1, total: 100, tip: 0, type: "cash"},

{ qty: 2, total: 90, tip: 0, type: "tab"},

{ qty: 2, total: 90, tip: 0, type: "tab"},

{ qty: 2, total: 90, tip: 0, type: "tab"},

{ qty: 2, total: 200, tip: 0, type: "cash"},

{ qty: 1, total: 200, tip: 100, type: "visa"}

]);

//a single property dimension

var paymentsByTotal = payments.dimension(function(d) { return d.

total; });

var paymentsByType = payments.dimension(function(d) { return d.

type; });

//a dimension built with a derived property

var paymentsByTotalType= payments.dimension(function(d) { return

d.total +" " + d.type; });

//we group by dimension ’s data.

var groupPaymentsByType = paymentsByType.group();

var groupPaymentsByTotal = paymentsByTotal.group();

// array of key value that counts rows.

var countPaymentsByType = groupPaymentsByType.all() ;

console.log(countPaymentsByType);

//cash 2 , tab 8 , visa 2

// array of key value that sums total of each type and aggregates

it

var volumePaymentsByType = paymentsByType.group().reduceSum(

function(d) { return d.total }).all();

//cash 300 , tab 920 , visa 500

//we filter paymentsByTotal dimension

// selects payments whose total is 100

paymentsByTotal.filter (100);

//this grouping it is not affected by the filter

var countPaymentsByTotal = groupPaymentsByTotal.all();

// affected by the filter:

console.log(countPaymentsByType);

FRANCISCO AGUILAR HIDALGO

18 CHAPTER 2. USED TECHNOLOGIES

//cash 1, tab 0, visa 0

2.9 dc.js

dc.js[9] is a JavaScript charting library with native Crossfilter support, allowing

highly efficient exploration on large multi-dimensional datasets. Charts rendered

using dc.js are data driven and reactive and therefore provide instant feedback

to user interaction. dc.js is an easy yet powerful JavaScript library for data

visualization and analysis in the browser and on mobile devices. We can see the

library in action in figure 2.7

(a) initial status (b) after interaction

Figure 2.7: dc.js example with interaction

2.10 THREEDC

THREEDC[10] is a JavaScript library for building 3D charts passing to the ob-

jects the data, it has native integration with Crossfilter and we can do different

interactions with the charts as tool tips, filters by a single value or a range of val-

ues that affects the other charts and drag and drop feature.We can do piecharts,

barchart (on 2d and 3d) smooth curve chart and bubbles charts. We can arrange

them into higher entities called panels. It is built on the top of three.js library.

THREEDC was developed during 2016 by a URJC student and its integration

with kibana library was done by another URJC student providing that library

a good way for feeding chart’s data and take representative ones. In 2017 the

PROYECTO FIN DE CARRERA

2.11. VBOARD-UI 19

student who developed the library is still doing more improvements for it. We

can see in figure 2.8 an example output of the library.

(a) Basic scene (b) Charts on a panel (c) A Bubble chart

Figure 2.8: THREEDC Scenes

2.11 VBoard-UI

VBoard-UI[11] is a platform to create 3D dashboard of elasticsearch data in the

browser. In the user interface of the platform we have different tabs that guide

us step by step for the construction of our dashboard. In the visualization tab we

create the visualization according to the chosen data, the type of graph selected,

the metrics and buckets. The buckets in the context of ElasticSearch is simply a

categorization of the data. In the panels tab we can add different charts created

in the previous step to a panel. And finally in the tab dashboard we can create

our dashboard from the charts and panels saved until now. This software is still

under development but already has the features mentioned. It is being done by

a master student of the URJC. He has made the integration of our library and

can visualize different types of A-Frame charts in VBoard-UI. In the figure 2.9

we can see a example of the library.

FRANCISCO AGUILAR HIDALGO

20 CHAPTER 2. USED TECHNOLOGIES

Figure 2.9: Creating a chart in VBoard-UI

PROYECTO FIN DE CARRERA

Chapter 3

Development

This is the main chapter of memory in which we will explain the process carried

out to achieve our objectives. We will analyze the use and development of the

application from an incremental point of view, guiding the reader through each

stage of the process. We will also comment on the development methodology

carried out throughout this project.

3.1 SCRUM Methodology

SCRUM is an iterative and incremental agile software development framework

for managing product development. It defines ”a flexible, holistic product de-

velopment strategy where a development team works as a unit to reach a com-

mon goal”, challenges assumptions of the ”traditional, sequential approach” to

product development, and enables teams to self-organize by encouraging phys-

ical co-location or close online collaboration of all team members, as well as

daily face-to-face communication among all team members and disciplines in the

project.

A key principle of SCRUM is its recognition that during production processes,

the customers can change their minds about what they want and need (often

called requirements volatility), and that unpredicted challenges cannot be easily

addressed in a traditional predictive or planned manner. As such, SCRUM adopts

21

22 CHAPTER 3. DEVELOPMENT

an empirical approach,accepting that the problem cannot be fully understood or

defined, focusing instead on maximizing the team’s ability to deliver quickly,

to respond to emerging requirements and to adapt to evolving technologies and

changes in market conditions.

In SCRUM there are three main roles defined:

1. Product owner: The person responsible for maintaining the product

backlog by representing the interest of the stakeholders, and ensuring the

value of the work the development team does.

2. SCRUM master: The person responsible for the SCRUM process, making

suer it is used correctly and maximizing its benefits.

3. Development team: A cross-functional group of people responsible for

delivering potentially shippable increments of product at the end of every

sprint.

However, in our case the product owner and the scrum master are represented

by the project tutor. Apart from that, we follow the SCRUM methodology

faithfully and I was a part of a real development team because my project is a

part of a bigger project inside my tutor’s department.

A sprint (or iteration) is the basic unit of development in scrum. The sprint

is a time-boxed effort; that is, it is restricted to a specific duration. The duration

is fixed in advance for each sprint and is normally between one week and one

month, with two weeks being the most common.

Each sprint starts with a sprint planning event that aims to define a sprint

backlog, identify the work for the sprint, and make an estimated commitment for

the sprint goal. Each sprint ends wit a sprint review and sprint retrospective, that

reviews progress to show to stakeholders and identify lessons and improvements

for the next sprints.

SCRUM emphasizes working product at the end of the sprint that is really

done, In the case of software, this likely includes that the software has been

integrated, fully tested and end-user documented.

PROYECTO FIN DE CARRERA

3.2. ITERATION 0: INVESTIGATION AND PRELIMINARY STUDY 23

Figure 3.1: SCRUM Methodology

The sprints followed on this project:

1. Iteration 0: Investigation and preliminary study

2. Iteration 1: First demo (chart)

3. Iteration 2: Interactivity with the user and filtering

4. Iteration 3: 3D visualizations

5. Iteration 4: Library architecture

6. Iteration 5: Integration with a data dashboard.

3.2 Iteration 0: Investigation and preliminary study

Due to the specific characteristics of the project, there are currently few libraries

that fit our requirements. A webGL-based JavaScript library, which also allows

you to transform that scene into a virtual reality one via webVR. We have tested

three.js supported from several plugins implemented by the community that allow

the requirements which we described before. We have also tested the a-frame

library which includes controls and default initialization to convert 3D scenes to

VR scenes.

The goal was therefore to create a basic visualization that allows us to move

through a 3D environment and toggle to a VR environment.

FRANCISCO AGUILAR HIDALGO

24 CHAPTER 3. DEVELOPMENT

For the creation of this basic scene of Three.js was necessary, the creation

of a scene, a camera, the geometry in order to draw it, define a div to contain

after a canvas, add a canvas in which to render our content and define our scene’s

repainting function. In addition to adding the necessary control to allow the

transformation of our scene to VR. We can see the results in figure 3.2.

Figure 3.2: Three.js WebVR example

(a) Demo in PC (b) Entering VR in mobile

Figure 3.3: A-frame WebVR example

In a frame to get the same scene just use the HTML initialization code of the

scene and use the geometry of a drawing. We can see results in figure 3.3.

PROYECTO FIN DE CARRERA

3.3. ITERATION 1: FIRST DEMO (CHART) 25

In all cases it was not necessary to install any additional software.We needed

to launch a server to display the content on pc and phone.

Because of its ease of development and also it fit so well to the required

characteristics, A-frame was chosen as the base library for the development of

our 3D dashboards.

3.3 Iteration 1: First demo (chart)

Once chosen the main technology for our project we proceed to create some charts

from basic entities of A-frame. These charts will be: pie chart and bar chat. Our

diagrams represent a data entry through a JavaScript object. We use A-Frame

primitives to draw these diagrams which are used inside the A-Frame components

that will generate these charts.

For the creation of the bar diagram the height of each bar will be varied

according to the data passed by parameter. The attributes of depth, width and

color will be the same for all bars that make up the chart. On the other hand

the attributes of the bar diagram are included within the HTML markup inside

bar chart’s attribute.

To do this we use as the base entity the a-box primitive included in A-Frame.

On this cube we can modify the different properties mentioned above. We create

an A-Frame component that is in charge of managing the creation of these cubes

with the height we need. This height will depend on the data entered and are

scaled to the maximum height value of the chart. The properties to be modified

are: width, height, depth, color and data. The last property was not included

within the component legibility of the HTML code .It must be added within the

JavaScript code. We see a result and the necessary HTML code in the figure 3.4.

<html>

<head>

<script src="https :// aframe.io/releases /0.5.0/ aframe.min.js"><

/script >

<script src="js/barchart.js"></script >

<title >Demo barchart </title >

FRANCISCO AGUILAR HIDALGO

26 CHAPTER 3. DEVELOPMENT

</head>

<body>

<a-scene >

<a-entity id="bars" barchart="width :14; height :3; depth :5; color:

red;gridson:false"></a-entity >

</a-scene >

<script >

// ensure window loaded

window.onload = function () {

// inyecting data to an existing chart ..

var mypieChart = document.querySelector (’#bars ’); //<a-entity >

mypieChart._data = [{ key: ’bla ’, value: 85 }...];

mypieChart.emit(’data -loaded ’);

}

</script >

</body>

</html>

Figure 3.4: Barchart built with A-Frame

As we can see the source code is very compact. For this visualization we have

only needed to load the A-Frame library, register our component and include the

portion of HTML that defines our diagram.

The strategy carried out for the creation of the pie chart is similar. First

we create an A-Frame component responsible for managing our basic entities

depending on the data. In this case the A-Frame primitive used is a-cylinder.

The a-cylinder is a geometry in which its circular section lies on the plane XZ.So

it is necessary to rotate the geometry and set the section to be drawn. That

PROYECTO FIN DE CARRERA

3.3. ITERATION 1: FIRST DEMO (CHART) 27

set of geometries that we draw are part of our pie chart. For the colors used in

the diagram we have generated a set of several colors. These are not generated

randomly. In this first iteration we did not want to worry about implementing

an algorithm that will generate colors within suitable hue and saturation values.

The modifiable properties in this chart are: radius, depth and data. We see a

result and the necessary HTML code in the figure 3.5.

<html>

<head>

<script src="https :// aframe.io/releases /0.5.0/ aframe.min.js"></

script >

<script src="js/piechart.js"></script >

<title>Pie Chart in A-Frame </title >

</head>

<body>

<a-scene >

<a-entity camera wasd -controls look -controls mouse -cursor ></a

-entity >

<a-entity id="pie" piechart="radius :4"></a-entity >

</a-scene >

<script >

// ensure window loaded

window.onload = function () {

// inyecting data to an existing chart ..

var mypieChart = document.querySelector (’#pie ’) ; //<a-entity >

mypieChart._data = [{ key: ’bla ’, value: 85 }, ...];

mypieChart.emit(’data -loaded ’);

}

</script >

</body>

</html>

As a conclusion to this first iteration we already have A-Frame components

to work on and add more functionality either on improvements in this component

or with other A-Frame components.

FRANCISCO AGUILAR HIDALGO

28 CHAPTER 3. DEVELOPMENT

Figure 3.5: Piechart built with A-Frame

3.4 Iteration 2: Interactivity with the user and filtering

Once we have several charts we want to increase its functionality marking the

next objectives:

• Show information about each element by moving the mouse over.

• Add crossfilter as data source.

• Update the charts with new data when clicking on an element.

3.4.1 Mouse interactions

To handle the position of the mouse in our 3d scene and determine what element

is interacting we use the ray-picking technique. To calculate the line we use

the point pointing the mouse and the direction vector of our camera. We see a

graphical explanation on the figure 3.6.

We can then know which is the first element that has been intersected by

that line. This is the theory that is implemented in the cursor component of

A-Frame. This library’s component is focused on VR scenes only. In order

to be compatible with 3D scenes without VR we have added the mouse-cursor

component that treats our cursor as the A-Frame cursor. This component is

PROYECTO FIN DE CARRERA

3.4. ITERATION 2: INTERACTIVITY WITH THE USER AND FILTERING 29

(a) Ray-picking example

(b) Ray-picking schema

Figure 3.6: Ray-picking technique

developed and maintained by the A-Frame community. This way you can execute

mouseenter and mouseleave events from each of our A-Frame elements. In figure

3.7 we can see interactions with both cursors.

(a) A-Frame’s cursor component (b) a-frame-mouse-cursor

Figure 3.7: Different Cursor component behavior comparison: A-Frame’s built-in
cursor and mouse-cursor

FRANCISCO AGUILAR HIDALGO

30 CHAPTER 3. DEVELOPMENT

To handle the mouseenter and mouseleave events we also had two options:

use the A-frame animation API or handle these events manually. After some test

we handled the events manually. The reasons have been:

• More direct: We manage the color change the creation of the title etc. In

just one site of our code.

• No new elements of the DOM are needed. To create an animation we had

to create a new DOM element to specify its characteristics and wait for it

to load the animation since being a new element.That is not immediate.

As for the information to display is a text that shows the key and value

of that element. To display texts within a 3D scene is not trivial[12] either

because multiple performance problems arise, to get geometries that adapt well

to the distance the letter is displayed, not to generate rounded edges, quality

of edges and kerning. These problems have been largely solved by the three.js

community and we have a viable solution for displaying A-Frame text using the

text component. We see a result of this first milestone in the figure 3.8.

(a) Initial state (b) mouse over a part of the chart

Figure 3.8: Piechart with mouse over interaction

3.4.2 Add crossfilter as data source

As we saw in section 2.8 we used crossfilter which is a library that allows us to

filter add and group large amounts of data very quickly. We choose it to be a data

PROYECTO FIN DE CARRERA

3.5. ITERATION 3: 3D VISUALIZATIONS 31

source for our project. To be able to extract data from crossfilter it is necessary

for our chart to host information of the dimension and the group. Once we pass

this data to our component, inside it is called the corresponding API to extract

the data and draw them. We also have the logic to determine if we have a group

of crossfilter or data entered directly. The crossfilter data prevails over the data

entered directly.

3.4.3 filtering in the charts

To perform the filtering in the charts we must handle a user interaction that tells

us about what value to filter and then update the other graphs.The filtering of

the graphs has been designed similar to the dc.js model. So the graph used for

the filtering is not modified. To obtain all the existing graphics in a scene we

have carried out a simple method: to collect all the elements of the scene and to

check if they have a group of crossfilter. This method would be improved in the

following iterations. We see in the figure 3.9 the result:

(a) Initial state
(b) After clicking a part of the
piechart

Figure 3.9: Piechart is filtering the barchart

In conclusion we have for our charts different data access strategies. And

different iterations with the user that allow to filter data.

3.5 Iteration 3: 3D visualizations

In this sprint we are going to make two new charts, in this case they are 3D that

are: 3D barchart and bubble chart. These charts will include all the improvements

made in the previous sprint so they accept both crossfilter data and data entered

FRANCISCO AGUILAR HIDALGO

32 CHAPTER 3. DEVELOPMENT

directly. Interactions with the user are also included and we can filter by an

element.

First of all, as we did in the 2D bar diagram, we are based on generating

all the parts of our chart in the A-Frame primitive a-box. In this case we start

generating the data source of crossfilter since to generate two-dimensional data

is not a simple task. We had to carry out a reduction of data that collected with

a dimension aggregated data of different type. The data structure thus differs

from that of the 2D charts created earlier. Now we had to pass functions to our

chart to know the properties that determine the position of the element on the Z

axis and X axis and the height of the element. The properties that are allowed

to modify of this chart are: height, width and depth. The color changes along

the Z axis and is maintained in each element along the X axis. We need to pass

those colors by argument too and the chart do not generate it explicitly. We see

images of the result in the figure 3.10.

Figure 3.10: 3D Barchart

For the bubble chart we have based on the primitive of A-Frame a-sphere.

The strategy carried out is the same and we first collect the data from crossfilter.

PROYECTO FIN DE CARRERA

3.6. ITERATION 4: LIBRARY ARCHITECTURE 33

In this case we need another additional measure for the radius of each bubble. In

bubble charts the choice of the maximum and minimum radius is important. If we

do not choose correctly we will not be able to compare data and the visualization

loses quality. The maximum radius in our case is determined by the following

formula:
minwidth, height, depth

minnocasesXaxis, nocasesZaxis
(3.1)

As the previous chart we need to pass the colors an their relationship with ele-

ments in different position on Z axis. On this chart we can modify: height, width

and depth. In the figure 3.11 we see the result.

Figure 3.11: Bubble chart

As a conclusion to this sprint we have the realization of new graphics that

provide greater visualization options.

3.6 Iteration 4: Library architecture

In this chapter we have two objectives: The first and most important is to en-

capsulate the functionality performed so far in a library. On the other hand the

characteristic of collecting a set of charts in a superior entity that we will call

panel.

One of the requirements of our library is that it is interchangeable with

THREEDC. With this we mean that we will follow the same interface in our

FRANCISCO AGUILAR HIDALGO

34 CHAPTER 3. DEVELOPMENT

API. This is important since our idea in the next sprint is to adapt our library

with external software. THREEDC has made an integration with kibana so

adapting our functions we will get that integration in a simple way. We also have

the requirement to use the components made so far from A-Frame in the HTML

code without using methods of the library. We define three different object types:

• DashBoard: It is an object which contain charts and panels. We have

methods to list: the added charts and the added panels. You can add

an empty dashboard to an existing scene and create a base scene with an

empty dashboard.

• Panel: It is an object which contain charts. We also have methods to add

and list the charts associated with the panel.

• Chart: This is an object that will be displayed on the screen. It has

methods to specify its dimensions, color, data source, etc.

Our library exports a single global object on which we have the following

methods:

• addDashBoard (AFrameScene): Allows us to associate a dashboard

with an existing A-Frame scene. To do this, we must pass through this

scene. Returns the dashboard object.

• Dashboard (containerdiv): Allows us to create a new scene from scratch.

It initialize a default configuration by creating the scene and a default

camera. Returns the dashboard object.

• Panel: creates a new panel to add charts to it.

• barChart: Creates an A-Frame entity with the associated barchart com-

ponent.

• pieChart: Creates an A-Frame entity with the associated piechart com-

ponent.

PROYECTO FIN DE CARRERA

3.6. ITERATION 4: LIBRARY ARCHITECTURE 35

• bubbleChart: Creates an A-Frame entity with the associated bubblechart

component.

• barChart3d: Creates an A-Frame entity with the associated barChart3d

component.

In the creation of our library we use the mixin technique to avoid repeating

common code throughout our objects. Creating a base object that will contain

various methods and attributes that will be shared for the rest of objects. In

our case we have used it for the creation of chart object. On the other hand

we are also used chaining which is a technique in which each function returns

the object itself. So you can make calls to functions in a row to reduce the code

required.

Let’s look an example of starting a scene in a div and creating a chart in it

with our library. We simplify some code in order to be more shorter an legible.

<html>

<head>

<script src="aframe.min.js"></script >

...

<script src="js/demopiechartscrath.js"></script >

<title>Simple dashboard with a pie chart , from scratch </title >

</head>

<body>

<div id="myscene"></div>

</body>

</html>

//file: demopiechartscrath.js

// Example (assuming there is "myscene" in HTML , to place the

dashboard)

window.onload = function () {

var scenediv = document.getElementById("myscene");

// 1

myDashboard = aframedc.dashboard(scenediv);

// 2

FRANCISCO AGUILAR HIDALGO

36 CHAPTER 3. DEVELOPMENT

var myPieChart = aframedc.pieChart ();

// Common

var data = [{ key: ’bla’, value: 85 }...];

myPieChart = myPieChart.data(data).depth (3);

myDashboard.addChart(myPieChart);

}

Figure 3.12: PieChart starting a dashboard with our library aframedc

For panel creation we create an A-Frame component that is constantly lis-

tening to its new aggregated immediate children elements. We have created a

small algorithm that reallocates the aggregated charts inside the panel. Once

a chart in panel is added or deleted it is detected by associated events and the

remaining charts are reallocated. This algorithm is consulting the dimensions of

the geometry,so it would also be valid for non-chart elements generated by our

components. We see an example of code an its result associated in the figure

3.13. We do not put code refering to crossfilter initialization and creation for this

example in order to be more shorter and legible. The HTML code is the same as

the previous example, it only changes in script section.

window.onload = function () {

// initialization

// getJSON call , draw meshes with data

$.getJSON("../ data/scm -commits.json", function (data) {

var json_data = data;

init(json_data);

});

var init = function (json_data) {

PROYECTO FIN DE CARRERA

3.7. ITERATION 5: INTEGRATION WITH A DATA DASHBOARD. 37

var scenediv = document.getElementById("myscene");

// 1

myDashboard = aframedc.dashboard(scenediv);

// 2

var mypiechart = aframedc.pieChart ();

var mybarchart = aframedc.barChart ();

var myPanel = aframedc.Panel();

// init crossfilter dimensions and groups

var objCF= initCFData(json_data);

mypiechart.dimension(objCF.dimByOrg)

.group(objCF.groupByOrg).radius (2.5)

.setTitle("commits per company");

mybarchart.dimension(objCF.dimByMonth)

.group(objCF.groupByMonth).width (30)

.setTitle("commits per month");

myPanel.width (40).height (15)

.nrows (1).ncolumns (2)

.setTitle("commits per company and month");

myPanel.addChart(mypiechart);

myPanel.addChart(mybarchart);

myDashboard.addPanel(myPanel);

}

}

Figure 3.13: Two Charts inside a Panel with our library aframedc

As a conclusion including a library in our project, it increases the ease of

creating our charts through HTML and also in a compact way in JavaScript.

3.7 Iteration 5: Integration with a data dashboard.

In this last sprint we have the following objectives, listed below:

FRANCISCO AGUILAR HIDALGO

38 CHAPTER 3. DEVELOPMENT

• Creation of the Stacked Barchart chart.

• Generate a unified and minified js file for use by third-party developers.

• Make the latest adaptations for integration with VBoard-UI.

• Include the src option in our charts when we initialize the scene in HTML.

3.7.1 VBoard-UI Integration

The first step to achieving the goals of this sprint was to make the latest adapta-

tions for integration with VBoard-UI. This integration was done by the developer

of VBoard-UI who is a URJC master student. For this, it was necessary that in

all our graphs the SetId method was exposed. We achieve this goal easily through

our base object created in the previous milestone. On the other hand we had to

adapt the input data of our 3D bar chart and bubble chart to accept a particular

format, the format that the THREEDC library has for these graphics. About

this library has already made a project to transform data from Elastik search

and be able to pass them as input data to those books. This has been the main

reason for adapting our data source. The changes produced in the charts have

been in their geometric creation loops. It has also been necessary to create func-

tions within these charts to assign the colors of each geometry without explicitly

pass them. We agreed cases of the final format of the data and we will explain

them in section 4.2. In the figure 3.14 we see a chart created from VBoard-UI:

Figure 3.14: Creating an A-Frame chart with VBoard-UI

PROYECTO FIN DE CARRERA

3.7. ITERATION 5: INTEGRATION WITH A DATA DASHBOARD. 39

3.7.2 Stacked Barchart

The stacked barchart graphs are graphs of 2D bars that accumulate different

segments in a specific bar in order to differentiate the parts that constitute a

whole. For this example we do not start from zero since we have different graphs

that have things in common with this graph.According to what is shown in the

previous section of this sprint this is a 2 dimensional graph and we aim to accept

the corresponding input data. This chart is very similar to the 3D Barchart

in its geometry creation loop but each element is drawn on top of the previous

element (increasing position on the Y axis) and not in depth. It changes the

way to scale the maximum height since it is the maximum contribution of the

set of elements in the X axis and not the maximum value of a specific element.

Once these modifications have been made as we have already mentioned, we have

reused parts of other charts such as upper title management and grids. In this

chart we have added a color legend that is shown on the right side of the chart.

We see a result of the chart in the figure 3.15.

Figure 3.15: Stacked Barchart

3.7.3 Bundling js file

In this step we make the versioning and packaging of our software. We have

decided to create a new repository in github1 for making a better file structure

of the project. This structure is more common and therefore readable for other

1https://github.com/fran-aguilar/a-framedc

FRANCISCO AGUILAR HIDALGO

https://github.com/fran-aguilar/a-framedc

40 CHAPTER 3. DEVELOPMENT

users of the A-Frame community. For the bundling and minification tasks of

our JavaScript library we have supported webpack 22. This npm’s3 module is

a bundler which processes all the JavaScript files of our application from an

entry point and recursively creates our dependency graph.To begin we create an

index.js file that will be our starting point of the application and in which we

encapsulate all the created functionality, that are: A-Frame components and

dashboard creation library that needs those components. In our exported file we

do not include external references such as A-Frame, or components of other users

used in our library. In the figure 3.16 we see the generated file structure for this

sprint.

Figure 3.16: Current file structure

3.7.4 Including src option in charts

About the src option in our charts is the definition of a new HTML attribute that

will receive the JSON object with the data to be displayed. With this we achieve

that our charts are defined exclusively with HTML. Recall that this milestone is

important since in A-Frame all the components and entities can be configured

from HTML code. To achieve this we have modified the schema of all the charts

created and we have added to our scheme that new src property. We have also

modified the initialization of our graphics to observe this property. Here is an

example of what is mentioned.

2https://webpack.js.org/
3https://www.npmjs.com/

PROYECTO FIN DE CARRERA

https://webpack.js.org/
https://www.npmjs.com/

3.7. ITERATION 5: INTEGRATION WITH A DATA DASHBOARD. 41

<html>

<head>

<script src="aframe.min.js"></script >

</head>

<body>

<a-scene>

<a-assets >

<a-asset -item id="barsdata" src="scm -commits.json"></a-asset -

item>

</a-assets >

<a-entity id="bars" barchart="width :14; gridson:true;title:

example barchart;src:# barsdata"></a-entity >

</a-scene>

</body>

</html>

FRANCISCO AGUILAR HIDALGO

Chapter 4

Design and results

In this chapter we will make a technical description of the software developed, a

user manual and lastly a demo that show the possibilities of the library.

4.1 Software Description

A-framedc is a library for building 3D charts in the browser. These charts can be

visualized in 3D scenes that allow to activate stereoscopic mode to be visualized

virtual reality headset. Interactions between different charts are allowed with the

use of crossfilter library. The library allows you to initialize scenes from scratch

or using an existing A-Frame scene.

As base technology we use the A-Frame library. In this technology we cre-

ate our 3D scenes and extend this library to create the components that create

our charts. This configuration allows us draw our graphs with the declaration

of HTML code exclusively. Although the main use is in conjunction with the

aframedc library. Both for the creation of the aframe components and for the

creation of chart objects we rely on base objects that contain basic methods

and properties. To extend the aframe library with a new component we must

construct an object with the schema property and the init, update and remove

methods.We can see in figure 4.1 piechart class diagram. All aframe components

trigger a set of events. These events are used to notify and receive notifications.

43

44 CHAPTER 4. DESIGN AND RESULTS

Figure 4.1: Piechart component: class structure

For our needs of updating chart components we add a new event that is released

when we add properties that are not defined in this component and allow its

updating. There are three ways to add the data information:

1. using the dimension and group methods: the dimension and group

methods allow us to set a dimension and a group of crossfilter respectively

to our chart. The chart accesses data which varies depending on the di-

mension’s status. When these properties are defined in a chart, a handler

function is added to each geometry of the graph so that it can be filtered

by clicking on it.

2. using the data method: This method allows to establish an array of data

to our chart. The library does not offer any behavior in the graph when

clicking on it. Although you can include a behavior by setting a handler

function with the customEvents method.

PROYECTO FIN DE CARRERA

4.2. USE OF THE LIBRARY 45

3. Using the src attribute: This attribute is part of the value of the A-

Frame component and can be initialized from html or via JavaScript using

the setAttribute method.

On the format of the data these will always be received in JSON format or in

JavaScript object. About how these data have to be composed we determine

three possible cases:

1. Array with one key and one value: The format of the data will be and

array of objects with the properties key and value.All the value properties

of the array must not be empty and it must be of the Number type.For

example

[{key:"visa",value :5},{key:"visa",value :10}]

is an example of valid JavaScript Object. This format is used by piechart,barchart

and smoothcurvechart.

2. Array with two keys and one value: this format is slightly different

than the previous one but we have two key properties. The restrictions for

the value property are the same than the previous data format. A valid

example of the data is:

[{key1: 20144, key2: "Ericsson",value: 0},{key1: 20144, key2: "

Huawei","value": 0}]

This format is used by barchart3d and stacked barchart.

3. Array with two keys and two value: A valid example of the data is:

[{key1: 20144, key2: "Ericsson",value: 0,value: 2},{key1:

20144 , key2: "Huawei",value: 0,value2 :1 0}]

This format is used exclusively on bubble charts.

4.2 Use of the library

We define three different object types in our library:

FRANCISCO AGUILAR HIDALGO

46 CHAPTER 4. DESIGN AND RESULTS

• DashBoard: It is an object which contain charts and panels. We have

methods to list: the added charts and the added panels. You can add

an empty dashboard to an existing scene and create a base scene with an

empty dashboard.

• Panel: It is an object which contain charts. We also have methods to add

and list the charts associated with the panel.

• Chart: This is an object that will be displayed on the screen. It has

methods to specify its dimensions, color, data source, etc.

Our library exports a single global object on which we have the following methods:

• addDashBoard(AFrameScene): Allows us to associate a dashboard

with an existing A-Frame scene. To do this, we must pass through this

scene. Returns the dashboard object.

• Dashboard(containerdiv): Allows us to create a new scene from scratch.

It initialize a default configuration by creating the scene and a default

camera. Returns the dashboard object.

• Panel: creates a new panel to add charts to it.

• barChart: Creates an A-Frame entity associated with the barchart com-

ponent.This is a chart which visualizes the evolution of a value or attribute

along an axis, commonly time, with bars of different heights.Barchart cre-

ation on JavaScript:

aframedc.barChart ().width (30).height (30).depth (30)

.gridsOn(false).data (...).setTitle("example")

An example with HTML markup:

<a-scene >

<a-assets >

<a-asset -item id="barsdata" src="scm -commits.json"></a-asset

-item>

</a-assets >

PROYECTO FIN DE CARRERA

4.2. USE OF THE LIBRARY 47

<a-entity barchart="width :30; depth :30; height :30; gridson:

true; title:example; src:# barsdata"></a-entity >

</a-scene >

• pieChart: Creates an A-Frame entity associated with the piechart com-

ponent.This is a chart which composes a circle that represents the differ-

ent parts of a whole in a set of segments of that circle until completing

it.Piechart creation on JavaScript:

aframedc.pieChart ().radius (3).depth (30)

.gridsOn(false).data (...).setTitle("example")

An example with HTML markup:

<a-scene >

<a-assets >

<a-asset -item id="piedata" src="scm -commits.json"></a-asset -

item>

</a-assets >

<a-entity piechart="depth :30; radius :3; gridson:true; title:

example; src:# piedata"></a-entity >

</a-scene >

• bubbleChart: Creates an A-Frame entity associated with the bubblechart

component.This is a chart that represents different spheres of different posi-

tion and size depending on different categories. In the context of our library

we play with the following parameters: width, height, depth and radius of

the sphere.BubbleChart creation on JavaScript:

aframedc.bubbleChart ()

.width (10)

.depth (10)

.height (10)

.keyaccessor(keyfunction)

.setTitle("contribution by company");

An example with HTML markup:

FRANCISCO AGUILAR HIDALGO

48 CHAPTER 4. DESIGN AND RESULTS

<a-scene >

<a-assets >

<a-asset -item id="bubbledata" src="scm -commits2k2v.json"></a

-asset -item>

</a-assets >

<a-entity bubblechart="depth :30; gridson:true; title:example;

src:# bubbledata"></a-entity >

</a-scene >

• barChart3d: Creates an A-Frame entity associated with the barChart3d

component. It is a chart which has bars of different heights like barchart,

but the height of each bar is determined by two values of two different

categories. These bars are drawn along two axis.3D Barchart creation on

JavaScript:

aframedc.barChart3d ()

.width (10)

.depth (10)

.height (10)

.keyaccessor(keyfunction)

.setTitle("contribution by company");

An example with HTML markup:

<a-scene >

<a-assets >

<a-asset -item id="bartddata" src="scm -commits2k1v.json"></a-

asset -item>

</a-assets >

<a-entity barchart3d="depth :30; gridson:true; title:example;

src:# bartddata"></a-entity >

</a-scene >

• barChartstack: Creates an A-Frame entity associated with the barchart-

stack component.This is also a bar chart, in this case each bar is composed

of parts of different size that make up the total of the bar in that specific

value. Stacked barchart creation on JavaScript:

PROYECTO FIN DE CARRERA

4.2. USE OF THE LIBRARY 49

aframedc.barChartstack ()

.width (10)

.depth (10)

.height (10)

.setTitle("contribution by company");

An example with HTML markup:

<a-scene >

<a-assets >

<a-asset -item id="barstackdata" src="scm -commits2k1v.json"><

/a-asset -item>

</a-assets >

<a-entity barchartstack="width :10; depth :10; gridson:true;

title:example; src:# barstackdata"></a-entity >

</a-scene >

• smoothCurveChart: Creates an A-Frame entity associated with the

smoothcurvechart component.This is a graph with a line representing the

evolution of a value or attribute along an axis. This graph does not re-

spond directly to user actions, mouse events etc. Your data is updated

if your group / dimension of crossfilter is affected. Smooth curve chart

creation on JavaScript:

aframedc.smoothCurveChart ()

.width (10)

.depth (10)

.height (10)

.setTitle("contribution by company");

An example with HTML markup:

<a-scene >

<a-assets >

<a-asset -item id="curvedata" src="scm -commits.json"></a-

asset -item>

</a-assets >

<a-entity smoothcurvechart="width :10; depth :10; gridson:true;

title:example; src:# curvedata"></a-entity >

FRANCISCO AGUILAR HIDALGO

50 CHAPTER 4. DESIGN AND RESULTS

</a-scene >

We can see in figure 4.2 all the charts visualized.

Figure 4.2: Different charts in a-framedc

Now we show a step by step use of the library with the following example. In

this example we start from scratch a scene and we add a barchart.First we create

a div which will be our scene’s placeholder.

<html>

<head>

<script src="aframe.min.js"></script >

<script src="startfromscratch.js"></script >

</head>

<body>

<div id="myscene"></div>

</body>

</html>

Then on startfromscratch.js file we create our dashboard. We divide it in 5 steps.

The step 1 and 2 changes when we already have an A-Frame scene created.

// 1 placeholder retrieving

var scenediv = document.getElementById("myscene");

// 2 DashBoard creation , and a-scene setup

myDashboard = aframedc.dashboard(scenediv);

// 3 piechart object creation

PROYECTO FIN DE CARRERA

4.3. A COMPLEX EXAMPLE 51

var mypiechart = aframedc.pieChart ();

// 4 configurating our chart

mypiechart.data ([{key:"visa",value :5} ,...])

.radius (2.5)

.setTitle("First pieChart");

// 5 adding it the scene

myDashboard.addChart(mypiechart);

Thanks to the A-Frame components ship with our A-Frame libary we can create

the charts just using HTML code, like in the following example:

<html>

<head>

<script src="aframe.min.js"></script >

</head>

<body>

<a-scene>

<a-assets >

<a-asset -item id="barsdata" src="http :// path/to/your/file/scm -

commits.json"></a-asset -item>

</a-assets >

<a-entity id="bars" barchart="width :14; gridson:true;title:

example barchart;src:# barsdata"></a-entity >

</a-scene>

</body>

</html>

4.3 A complex example

In the following example we see almost all the characteristics of the library. It is

a 3D scene already initialized with different elements such as: the company logo

or a 360 degrees background and different circles on the ground to interact with

them. The texts within the central geometry at the start of the scene perform

different actions (background change, cleaning of existing filters, etc.) working as

a user interface. On the other hand the library is used to create the charts.Thanks

to A-Frame these entities returned by the library can be rotated, displaced or

FRANCISCO AGUILAR HIDALGO

52 CHAPTER 4. DESIGN AND RESULTS

include more behaviors. The chart’s data have been created with the crossfilter

library so we can interact with mouse click. That interaction perform a filter on

crossfilter’s dimension with this value.

Thanks to A-Frame we can also see this demo in Virtual Reality devices with

stereoscopic vision. It is also possible to reallocate the scene to our choice thanks

to the A-Frame scene inspector that allows us to change the position, rotation,

textures, etc. of all our entities.

(a) Initial charts (b) Right side of scene

Figure 4.3: Initial state of the demo with OPNFV git repository statistics

(a) Interacting with the charts (b) Editing the scene

Figure 4.4: Interacting with the charts and editing the scene with A-Frame in-
spector

PROYECTO FIN DE CARRERA

4.3. A COMPLEX EXAMPLE 53

Figure 4.5: The OPNFV demo when we enter on VR

FRANCISCO AGUILAR HIDALGO

Chapter 5

Conclusions

We can say that the objectives proposed for our library have been fulfilled for

the most part. We have been able to recreate part of the basic functionality of

other chart creation libraries in which we have inspired such as: dc.js, highcharts

and ultimately THREEDC as an example of 3D data graphics library. Support

on both PCs and mobile devices is high enough at least to be able to view

the 3D environment. Important aspects such as performance (frame rate per

second), page load time and the number of downloaded items are within normal

parameters. On the other hand its compatibility with A-Frame allows us to start

from scenes already created and to modify different attributes and behaviors of

the charts. Adapting the syntax of THREEDC has been achieved but there are

still aspects such as the exchange dimensions between both libraries that have

not been achieved.

On the other hand an external software of creation of data dashboard VBoard-

UI has realized an integration of our library increasing its possibilities. The

library has been advertised in the corresponding A-Frame slack, and examples

of the library have been published. It has been published on npm in the second

week of June reaching hundreds of downloads.

55

56 CHAPTER 5. CONCLUSIONS

5.1 Results

I started this on last days of January 2017 and ended at the last days of May

2017 so I estimate around 350 hours of work. As a result of this work we have

this library. It’s open source and all the source code is on github1. This library

is also a npm’s package and uploaded to it2. All the demos I have realized are on

the web too3.All this information is on the specific web of the project4.

5.2 Application of lessons earned

Although the degree that I have made is Telecommunications Engineering around

a third of the subjects had a programming component which has been able to

establish a good programming bases knowing their main programming paradigms

as object oriented programming. In other subject I learned the different Web

technologies and even from a general knowledge about OpenGL and computer

graphics.

5.3 Lessons learned

The main lesson learned has been the deeper knowledge of the JavaScript lan-

guage and in general of web technologies. Although A-Frame is a library that

is mainly based on HTML, to take full advantage of all its possibilities and to

extend it you need a good knowledge of JavaScript. Throughout the project I

have also learned quite a few concepts about creating computer graphics and the

most used techniques within the creation of 3D scenes. An important aspect of

this project is that it has been inspired by other existing open source JavaScript

libraries and I use of them as a step to create my solution. Examples of this are:

the crossfilter library, dc.js or existing components of the community of A-Frame.

It has improved my ability to read and write in English as it is the first time I

1http://github.com/fran-aguilar/a-framedc
2https://www.npmjs.com/package/a-framedc
3https://fran-aguilar.github.io/a-framedc/
4https://fran-aguilar.github.io/

PROYECTO FIN DE CARRERA

http://github.com/fran-aguilar/a-framedc
https://www.npmjs.com/package/a-framedc
https://fran-aguilar.github.io/a-framedc/
https://fran-aguilar.github.io/

5.4. FUTURE WORK 57

have undertaken a english text of so many words. I have also had to read a lot

of information from the internet and books in English.

5.4 Future work

Although we have undertaken several important steps with the creation of this

library by combining representation of 3D data graphics and an immersive en-

vironment. There is still much to explore. Objectives such as different virtual

environments or a better user interface. Accept more devices like gamepads or the

use of more advanced virtual reality devices like HTC Vive. On the enlargement

of the library we would have several fields of improvement. These are:

• Representation of new charts.

• Support for animations in charts.

• Selection of a set of data in the charts

FRANCISCO AGUILAR HIDALGO

Appendix A

README.md on GitHub

a-framedc 3D charts built with A-frame. A-framedc ships with a set of A-Frame

components and a library to use them in easier way.It provides the following

features:

• Create 3D chart visualizations of data.

• No additional software must we installed for executing our software thanks

to A-Frame.

• Similar functionality as dc.js library with filter possibilities and different

types of charts.

• A fast filter response thanks to crossfilter.

• The ability to change between a 3D scene and a Virtual reality scenario.

• Render our charts on a existing scenario, or create a scene from scratch.

Our library exports a single global object (a-framedc) on which we have the

following methods:

• addDashBoard(AFrameScene): Allows us to associate a dashboard

with an existing A-Frame scene. To do this, we must pass through this

scene. Returns the dashboard object.

59

https://github.com/dc-js/dc.js

60 APPENDIX A. README.MD ON GITHUB

• Dashboard(containerdiv): Allows us to create a new scene from scratch.

It initialize a default configuration by creating the scene and a default

camera. Returns the dashboard object.

• Panel: creates a new panel to add charts to it.

• barChart: Creates an A-Frame entity associated with the barchart com-

ponent. This is a chart which visualizes the evolution of a value or attribute

along an axis, commonly time, with bars of different heights.

• pieChart: Creates an A-Frame entity associated with the piechart compo-

nent. This is a chart which composes a circle that represents the different

parts of a whole in a set of segments of that circle until completing it.

• bubbleChart: Creates an A-Frame entity associated with the bubblechart

component.This is a chart that represents different spheres of different posi-

tion and size depending on different categories. In the context of our library

we play with the following parameters: width, height, depth and radius of

the sphere.

• barChart3d: Creates an A-Frame entity associated with the barChart3d

component. It is a chart which has bars of different heights like barchart,

but the height of each bar is determined by two values of two different

categories. These bars are drawn along two axis.

• barChartstack: Creates an A-Frame entity associated with the barchart-

stack component.This is also a bar chart, in this case each bar is composed

of parts of different size that make up the total of the bar in that specific

value.

• smoothCurveChart: Creates an A-Frame entity associated with the

smoothcurvechart component.This is a graph with a line representing the

evolution of a value or attribute along an axis. This graph does not re-

spond directly to user actions, mouse events etc. Your data is updated if

your group / dimension of crossfilter is affected.

Browser Installation Install and use by directly including the browser files:

PROYECTO FIN DE CARRERA

https://github.com/fran-aguilar/a-framedc/tree/master/src/components/panel/
https://github.com/fran-aguilar/a-framedc/tree/master/src/components/piechart
https://github.com/fran-aguilar/a-framedc/tree/master/src/components/piechart
https://github.com/fran-aguilar/a-framedc/tree/master/src/components/bubblechart
https://github.com/fran-aguilar/a-framedc/tree/master/src/components/barchart3d
https://github.com/fran-aguilar/a-framedc/tree/master/src/components/barchartstack
https://github.com/fran-aguilar/a-framedc/tree/master/src/components/smoothcurvechart

61

<head>

<title>My A-Frame Scene</title>

<script src="https://aframe.io/releases/0.5.0/aframe.min.js"></script>

<script src="https://unpkg.com/a-framedc@1.0.7/dist/aframedc.min.js"></script>

</head>

<body>

<a-scene>

<a-assets>

<a-asset-item id="barsdata" src="http://path/to/your/file.json"></a-asset-item>

</a-assets>

<a-entity id="bars" barchart="width:14;gridson:true;src:#barsdata"></a-entity>

</a-scene>

</body>

NPM Installation Install via NPM:

npm install a-framedc

Then register and use.

require(’aframe’);

var aframedc = require(’a-framedc’);

Contact This project is under active development if you have any issue please

let me know. Every help is much appreciated.

FRANCISCO AGUILAR HIDALGO

Appendix B

Demo with Controller

In this appendix I’ll talk about several changes I made on the section 4.3’s demo

to support input from gamepad. After several tests made with a smartphone

running android 6.0 OS and PS4 wireless controller,Chrome and Firefox browsers

couldn’t recognize my gamepad.

As an alternative solution we use WebRTC1 to stablish a connection between

our PC(with the gamepad connected) and our phone. The A-Frame community

already use this implementation and the created an WebRTC server2 which serves

gamepad and keyboard controls. On that server we put a pair-code generated

on client side to binding that page to the client. On the other hand there is

an A-Frame component3 which we put on our A-Frame scene. This component

randomly generate a pair code and it is listening on the socket created. This

connection waits for the host.Once the connection is stablished the gamepad

controls and their events are retrasnmitted to the other pair. On the following

pictures we see the proccess:

1https://webrtc.org/
2https://github.com/donmccurdy/proxy-controls-server
3https://github.com/donmccurdy/aframe-proxy-controls

63

https://webrtc.org/
https://github.com/donmccurdy/proxy-controls-server
https://github.com/donmccurdy/aframe-proxy-controls

64 APPENDIX B. DEMO WITH CONTROLLER

Figure B.1: Step 1: accessing the scene on the phone

(a) Accesing server through our PC (b) Entering code and connecting

Figure B.2: Step 2: Server Side Connection

PROYECTO FIN DE CARRERA

Bibliography

[1] C. Musciano and B. Kennedy, HTML & XHTML: The Definitive Guide.

O’Reilly, 2000.

[2] M. Pilgrim, HTML5: Up and Running. O’Reilly, 2010.

[3] D. Crockford, JavaScript:The Good Parts. O’Reilly, 2008.

[4] T. Parisi, WebGL:Up and Running. O’Reilly, 2012.

[5] Webvr website. [Online]. Available: https://webvr.info/

[6] three.js website. [Online]. Available: https://threejs.org/

[7] A-frame web page. [Online]. Available: https://aframe.io/

[8] crossfilter api reference. [Online]. Available: https://github.com/square/

crossfilter/wiki

[9] dc.js web. [Online]. Available: https://dc-js.github.io/dc.js/

[10] A. Alonso. Threedc git repository. [Online]. Available: https://github.com/

adrianalonsoba/THREEDC/

[11] D. M. Lumbreras. Vboard-ui git repository. [Online]. Available: https:

//github.com/VBoard/VBoard-UI

[12] P. Khachi. It’s 2015 and drawing text is still hard (webgl,

threejs). [Online]. Available: https://www.eventbrite.com/engineering/

its-2015-and-drawing-text-is-still-hard-webgl-threejs/

65

https://webvr.info/
https://threejs.org/
https://aframe.io/
https://github.com/square/crossfilter/wiki
https://github.com/square/crossfilter/wiki
https://dc-js.github.io/dc.js/
https://github.com/adrianalonsoba/THREEDC/
https://github.com/adrianalonsoba/THREEDC/
https://github.com/VBoard/VBoard-UI
https://github.com/VBoard/VBoard-UI
https://www.eventbrite.com/engineering/its-2015-and-drawing-text-is-still-hard-webgl-threejs/
https://www.eventbrite.com/engineering/its-2015-and-drawing-text-is-still-hard-webgl-threejs/

66 BIBLIOGRAPHY

[13] N. C. Zakas, Maintainable JavaScript. O’Reilly, 2012.

[14] A-frame source code. [Online]. Available: https://github.com/aframevr/

aframe/

[15] A-frame documentation. [Online]. Available: https://aframe.io/docs/

[16] R. Dudler. git - the simple guide. [Online]. Available: http://rogerdudler.

github.io/git-guide/index.es.html

[17] three.js documentation. [Online]. Available: https://threejs.org/docs/

[18] dc.js git repository. [Online]. Available: https://github.com/dc-js/dc.js

[19] crossfilter git repository. [Online]. Available: https://github.com/square/

crossfilter

[20] LATEX:Wikibook in English. [Online]. Available: https://en.wikibooks.org/

wiki/LaTeX/

[21] can i use? website. [Online]. Available: http://caniuse.com/#search=webgl

[22] Deloitte. Tech trends 2017. [Online]. Available: https://www2.deloitte.

com/uk/en/pages/technology/articles/tech-trends.html

[23] S. Penadés. Object pickin. [Online]. Available: https://soledadpenades.

com/articles/three-js-tutorials/object-picking/

[24] D. Lyons. Rendering text in webvr. [Online]. Available: https:

//developers.google.com/web/showcase/2017/within

[25] 10 best uses of virtual reality in marketing. [Online]. Available:

http://mbryonic.com/best-vr/

[26] Webvr api — mdn. [Online]. Available: https://developer.mozilla.org/

en-US/docs/Web/API/WebVR API

PROYECTO FIN DE CARRERA

https://github.com/aframevr/aframe/
https://github.com/aframevr/aframe/
https://aframe.io/docs/
http://rogerdudler.github.io/git-guide/index.es.html
http://rogerdudler.github.io/git-guide/index.es.html
https://threejs.org/docs/
https://github.com/dc-js/dc.js
https://github.com/square/crossfilter
https://github.com/square/crossfilter
https://en.wikibooks.org/wiki/LaTeX/
https://en.wikibooks.org/wiki/LaTeX/
http://caniuse.com/#search=webgl
https://www2.deloitte.com/uk/en/pages/technology/articles/tech-trends.html
https://www2.deloitte.com/uk/en/pages/technology/articles/tech-trends.html
https://soledadpenades.com/articles/three-js-tutorials/object-picking/
https://soledadpenades.com/articles/three-js-tutorials/object-picking/
https://developers.google.com/web/showcase/2017/within
https://developers.google.com/web/showcase/2017/within
http://mbryonic.com/best-vr/
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API

	Acknowledgements
	Abstract
	Resumen
	Contents
	Figure index
	Acronyms
	1 Introduction
	1.1 Current context
	1.2 Objetives

	2 Used Technologies
	2.1 HTML
	2.2 JavaScript
	2.3 WebGL
	2.4 Virtual Reality
	2.5 WebVR
	2.6 Three.js
	2.7 A-Frame
	2.8 Crossfilter
	2.9 dc.js
	2.10 THREEDC
	2.11 VBoard-UI

	3 Development
	3.1 SCRUM Methodology
	3.2 Iteration 0: Investigation and preliminary study
	3.3 Iteration 1: First demo (chart)
	3.4 Iteration 2: Interactivity with the user and filtering
	3.4.1 Mouse interactions
	3.4.2 Add crossfilter as data source
	3.4.3 filtering in the charts

	3.5 Iteration 3: 3D visualizations
	3.6 Iteration 4: Library architecture
	3.7 Iteration 5: Integration with a data dashboard.
	3.7.1 VBoard-UI Integration
	3.7.2 Stacked Barchart
	3.7.3 Bundling js file
	3.7.4 Including src option in charts

	4 Design and results
	4.1 Software Description
	4.2 Use of the library
	4.3 A complex example

	5 Conclusions
	5.1 Results
	5.2 Application of lessons earned
	5.3 Lessons learned
	5.4 Future work

	A README.md on GitHub
	B Demo with Controller
	Bibliography

